Thermoluminescence in Chloroplast Thylakoid
نویسندگان
چکیده
Luminescence occurs in almost all the materials absorbing photon energy and is a phenomenon of light emitting process. There are various types of luminescence, e.g. fluorescence, phosphorescence, delayed luminescence, chemiluminescence and thermoluminescence. In these cases, light is emitted when a photoor chomo-excited molecules is deexcited to its ground state. During this deexcitation process, radiationless internal conversion and heat dissipation occurs, which reduces the quantum yield of light emission. Luminescence can be also thermally induced and enhanced by heating the sample in the dark. This process is called thermoluminescence (TL) and describes the emission of light at characteristic temperatures from samples containing chemiluminescent active species, radical pair states or electron hole pairs (Ducruet, 2003; Misra et al., 2001). Many minerals heated at very high temperature emit luminescence and so TL has been used initially in geology, archeological dating and radiation dosimetry. The theory of charge recombination in these processes was first worked out for such minerals (Randall & Wilkins, 1945). Thermally induced photon emission by a pre-irradiated chloroplast or thylakoid or by leaf samples in darkness is known as thermoluminescence (TL) (Misra et al., 2001; Misra & Ramaswamy, 2001). This is characteristic of solid states (semi-conductors) under thermally activated recombination of electrons and positive holes that are generated by particle radiation or electromagnetic field at room or low temperature prior to their heating in dark (Chen & McKeever, 1997). TL signals were first detected in dried chloroplasts samples (Arnold & Sherwood, 1957; Tollin & Calvin 1957). Photosynthetic systems in dried chloroplasts are supposed to be severely damaged. TL emission was also recorded in intact leaves and algal cells (Arnold & Sherwood, 1957). Arnold (1966) proposed a model of recombination of free holes in PS I and of free electrons from PS II as the sources of thermally induced luminescence from algae (Chlorella) cells in darkness. However, Arnold & Azzi (1968) refuted the role of free holes from PS I. Based on further evidence on the generation of charges in irradiated chloroplast, in the new model for TL charge recombination the positive and negative charge traps were proposed to reside within PS II (Arnold & Azzi, 1968). Further, biophysical studies and availability of photosynthetic
منابع مشابه
THERMOLUMINESCENCE AND OXYGEN EVOLUTION IN JA-TREATED BARLEY (Hordeum vulgare L.)
The effect of jasmonic acid on PSII reactions was assessed by changes in kinetic characteristics of O2 evolution and thermoluminesce glow curves in barley leaves and isolated thylakoid membranes. In comparison to the control preparation, JA-treated samples showed reduced efficiency in the utilization of oxidizing equivalents generated at PSII reaction centres and retardation of S-state transiti...
متن کاملChlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators.
Luminescence from photosynthetic material observed in darkness following illumination is a delayed fluorescence produced by a recombination of charge pairs stored in photosystem II, i.e. the back-reaction of photosynthetic charge separation. Thermoluminescence (TL) is a technique consisting of a rapid cooling followed by the progressive warming of a preilluminated sample to reveal the different...
متن کاملIncreased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques.
Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band ...
متن کاملHSP90C interacts with PsbO1 and facilitates its thylakoid distribution from chloroplast stroma in Arabidopsis
Arabidopsis plastidic HSP90C is an HSP90 family molecular chaperone that is required for chloroplast development and function. To understand the mechanism of action of HSP90C within the chloroplast, we conducted a yeast two-hybrid screening and revealed it interacts directly with the photosystem II extrinsic protein PsbO1, which performs a canonical function in the thylakoid lumen. To understan...
متن کاملA SecY Homologue Is Required for the Elaboration of the Chloroplast Thylakoid Membrane and for Normal Chloroplast Gene Expression
Results of in vitro and genetic studies have provided evidence for four pathways by which proteins are targeted to the chloroplast thylakoid membrane. Although these pathways are initially engaged by distinct substrates and involve some distinct components, an unresolved issue has been whether multiple pathways converge on a common translocation pore in the membrane. A homologue of eubacterial ...
متن کامل